推荐阅读:湿地表层土地要素计量学分析 湿地表层土地要素计量学分析湿地表层土地要素计量学分析 引言 1材料与方法 1.2样品分析有机碳和油类的测定方法参照国标GB17378.5-2007[7]进行。用凯氏法测定土壤中总氮含量。用消解-钼抗锑抗分光光度法测定样品中的总磷含量。实
湿地表层土地要素计量学分析
湿地表层土地要素计量学分析
湿地表层土地要素计量学分析
引言 1材料与方法 1.2样品分析有机碳和油类的测定方法参照国标GB17378.5-2007[7]进行。用凯氏法测定土壤中总氮含量。用消解-钼抗锑抗分光光度法测定样品中的总磷含量。实验过程中选择20%的样品进行平行双样测定,相对标准偏差均小于4%。土壤的盐度和pH值采用电位法测定,分别使用DDS-307型电导仪和PHS-3C精密酸度计完成分析。 2结果与讨论
2.1非退化区湿地土壤生源要素计量学特征 2.1.2两种湿地对比分析从数值上看,芦苇湿地在TOC、TN、TP方面均比赤碱篷湿地高。芦苇湿地TOC含量为1.63%,赤碱篷湿地TOC含量为0.31%,芦苇湿地在TN含量上是赤碱篷湿地5倍;芦苇湿地TN含量为0.16%,赤碱篷湿地TN含量为0.08%,芦苇湿地在TN含量上是赤碱篷湿地2倍;芦苇湿地TP含量为0.068%,赤碱篷湿地TP含量为0.056%,芦苇湿地在TP含量上是赤碱篷湿地1.21倍。由于赤碱篷湿地与芦苇湿地植被的不同是导致TOC方面存在高达5倍差异的主要原因。相对于翅碱蓬,芦苇凭借其发达的根系和植物枯落物为表层土壤积累了较高含量的有机碳[8-9]。在TN方面,两种湿地同样存在较大差异,分析原因认为除植被因素外,由于赤碱篷湿地生长在海边滩涂区,受涨落潮影响,在较短的干湿交替周期作用下,有助于湿地脱氮[10],其全氮含量较低。农田灌溉水、工业及生活废水的排放等人为扰动因素,在一定程度上缩小了两种湿地在TN上的差异。相比TOC、TN,两种湿地TP含量差别较小,可以认为TP的含量与植被类型不大。原因是湿地自然土壤中的磷主要来源于成土母质以及动植物残体,其含量主要受到区域气候条件和土壤类型的影响[11]。罗先香[12]等通过对辽河口湿地研究认为,总磷含量的变异系数比较小,总磷在整个区域分布较均匀,这表明土壤中磷含量与该地区的成土母质密切相关。 2.2退化区土壤生源要素计量学特征 2.2.2芦苇湿地退化区土壤碳、氮、磷生态化学计量学特征土壤的碳、氮、磷元素的变化范围分别为:0.51%~1.36%,0.11%~0.20%,0.44‰~0.66‰,平均值为0.89%、0.15%、0.54‰,变异系数为33.4%,21.8%和18.5%,氮和磷元素的空间变异性低于碳。此外,通过对三种元素的关联性研究表明,碳与氮元素间存在着极显着的相关关系(n=6,P<0.01),碳与磷元素间存在着极显着的相关关系(n=6,P<0.01),而氮与磷元素间存在明显相关性(n=6,P<0.05)。碳和氮元素(R2值为0.9548)之间、氮和磷(R2值为0.9046)之间呈现良好的线性拟合关系,二者几乎同步变化,碳和磷(R2值为0.8237)线性拟合程度相对较低。芦苇湿地土壤C/N比为4.64~6.82,平均值为5.75,变异系数为13.4%;C/P比为11.60~20.65,平均值为16.33,变异系数为19.0%;N/P比为2.50~3.03,平均值为2.82,变异系数为7.5%,土壤N/P比变化相对较小,而C/N、C/P比变化较大。如图3-2,同翅碱蓬湿地类似,在TOC、TN、TP含量方面均表现出非退化区>退化区,这表明芦苇湿地植被对C、N、P有一定程度贡献,特别的是在TOC方面,由于凋落物分解的原因,使土壤中有机碳含量提高较为明显。由于取样点LH27、LH28、LH29离油井距离较近,但其在TOC方面并未表现出明显高于周边站位的现象,说明目前石油开发没有发生泄漏现象,尚未对周边环境造成明显影响。相关性方面,芦苇湿地退化区与非退化区类似,其TOC与TN表现出同步的变化趋势,具有极显着的相关性(P<0.01),而在翅碱蓬湿地,TOC与TN没有表现出相同的变化趋势,可认为不存在相关性(P>0.05)。通过对比两种湿地退化区可以发现,同样受到人类活动的干扰而出现植被的退化,芦苇表现出对碳、氮、磷元素更强的维持平衡的能力。在芦苇湿地退化区,碳、氮、磷元素依然有着显着的相关性及较高的其线性拟合,这说明芦苇较强的维持碳、氮、磷元素平衡的能力,而在翅碱蓬湿地,碳、氮、磷元素不存在相关性,线性拟合较低,表现出较差的抗干扰能力,在翅碱蓬退化的情况下保持碳、氮、磷元素之间的平衡能力不足,人类活动对碳、氮、磷的含量的影响较大。
3结论
&n